Polygonal polyominoes on the square lattice
نویسندگان
چکیده
We study a proper subset of polyominoes, called polygonal polyominoes, which are defined to be self-avoiding polygons containing any number of holes, each of which is a self-avoiding polygon. The staircase polygon subset, with staircase holes, is also discussed. The internal holes have no common vertices with each other, nor any common vertices with the surrounding polygon. There are no ‘holes-within-holes’. We use the finite-lattice method to count the number of polygonal polyominoes on the square lattice. Series have been derived for both the perimeter and area generating functions. It is known that while the critical point is unchanged by a finite number of holes, when the number of holes is unrestricted the critical point changes. The area generating function coefficients grow exponentially, with a growth constant greater than that for polygons with a finite number of holes, but less than that of polyominoes. We provide an estimate for this growth constant and prove that it is strictly less than that for polyominoes. Also, we prove that, enumerating by perimeter, the generating function of polygonal polyominoes has zero radius of convergence and furthermore we calculate the dominant asymptotics of its coefficients using rigorous bounds. PACS numbers: 0540F, 0550, 6460
منابع مشابه
Enumeration of Symmetry Classes of Convex Polyominoes in the Square Lattice
This paper concerns the enumeration of rotation-type and congruence-type convex polyominoes on the square lattice. These can be defined as orbits of the groups C4, of rotations, and D4, of symmetries, of the square, acting on (translation-type) polyominoes. In virtue of Burnside’s Lemma, it is sufficient to enumerate the various symmetry classes (fixed points) of polyominoes defined by the elem...
متن کاملPunctured polygons and polyominoes on the square lattice
We use the finite lattice method to count the number of punctured staircase and selfavoiding polygons with up to three holes on the square lattice. New or radically extended series have been derived for both the perimeter and area generating functions. We show that the critical point is unchanged by a finite number of punctures, and that the critical exponent increases by a fixed amount for eac...
متن کاملExactly solved models of polyominoes and polygons
This chapter deals with the exact enumeration of certain classes of selfavoiding polygons and polyominoes on the square lattice. We present three general approaches that apply to many classes of polyominoes. The common principle to all of them is a recursive description of the polyominoes which then translates into a functional equation satisfied by the generating function. The first approach a...
متن کامل0 Statistics of lattice animals ( polyominoes ) and polygons
We have developed an improved algorithm that allows us to enumerate the number of site animals (polyominoes) on the square lattice up to size 46. Analysis of the resulting series yields an improved estimate, τ = 4.062570(8), for the growth constant of lattice animals and confirms to a very high degree of certainty that the generating function has a logarithmic divergence. We prove the bound τ >...
متن کاملGreen Matrices Associated with Generalized Linear Polyominoes
A Polyomino is an edge–connected union of cells in the planar square lattice. Here we consider generalized linear polyominoes; that is, the polyominoes supported by a n × 2 lattice. In this paper, we obtain the Green function and the Kirchhoff index of a generalized linear polyomino as a perturbation of a 2n–path by adding weighted edges between opposite vertices. This approach deeply links gen...
متن کامل